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Abstract The problem of minimizing a pseudo-Boolean function, that is, a
real-valued function of 0-1 variables, arises in many applications. A quadrati-
zation is a reformulation of this nonlinear problem into a quadratic one, ob-
tained by introducing a set of auxiliary binary variables. A desirable property
for a quadratization is to introduce a small number of auxiliary variables. We
present upper and lower bounds on the number of auxiliary variables required
to define a quadratization for several classes of specially structured functions,
such as functions with many zeros, symmetric, exact k-out-of-n, at least k-
out-of-n and parity functions, and monomials with a positive coefficient, also
called positive monomials. Most of these bounds are logarithmic in the num-
ber of original variables, and we prove that they are best possible for several
of the classes under consideration. For positive monomials and for some other
symmetric functions, a logarithmic bound represents a significant improve-
ment with respect to the best bounds previously published, which are linear
in the number of original variables. Moreover, the case of positive monomials
is particularly interesting: indeed, when a pseudo-Boolean function is repre-
sented by its unique multilinear polynomial expression, a quadratization can
be obtained by separately quadratizing its monomials.
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1 Introduction.

A pseudo-Boolean function is a mapping f : {0, 1}n → R that assigns a real
value to each tuple of n binary variables (x1, . . . , xn). Pseudo-Boolean func-
tions have been extensively used and studied during the last century and espe-
cially in the last 50 years, given that they model problems in a wide range of
areas such as reliability theory, computer science, statistics, economics, finance,
operations research, management science, discrete mathematics, or computer
vision (see [5,7] for applications and references). In most of these applications
the function f has to be optimized, therefore we are interested in the problem

min
x∈{0,1}n

f(x), (1)

which is NP-hard even when f is expressed as a quadratic polynomial.
Several techniques have been proposed to solve problem (1), such as enu-

merative methods, algebraic methods, linear reformulations and quadratic re-
formulations, which are then solved using a linear or quadratic solver, respec-
tively (see the books and surveys [5–8,11–13]). It is not clear whether one of
the previous techniques is generally better than the others. In fact, the perfor-
mance of the different approaches seems to depend on the underlying structure
of the problem, among other factors.

In this paper, we focus on quadratizations, that is, quadratic reformulations
of problem (1). Interestingly, much progress in the understanding of quadra-
tizations has been made in the field of computer vision, where this type of
technique performs especially well for problems such as image restoration. A
systematic study of quadratizations and of their properties has been initiated
in Anthony et al. [3], where a quadratization is formally defined as follows.

Definition 1 Given a pseudo-Boolean function f(x) on {0, 1}n, we say that
g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending
on x and on m auxiliary variables y1, . . . , ym, such that

f(x) = min
y∈{0,1}m

g(x, y) for all x ∈ {0, 1}n. (2)

It is known that every pseudo-Boolean function f admits a quadratization [19],
and that various quadratizations can actually be computed in polynomial time.
Moreover, it is clear that given a pseudo-Boolean function f and a quadra-
tization g, minimizing f over x ∈ {0, 1}n is equivalent to minimizing g over
(x, y) ∈ {0, 1}n+m. Therefore, when a quadratization of f is available, the
pseudo-Boolean minimization problem (1) can be reformulated as a quadratic
one. Of course, the problem of optimizing the quadratic reformulation is still
NP-hard, and under the hypothesis that P 6= NP, one cannot hope for much
better. Rather, the quadratization approach attempts to draw benefit from
numerous recent advances in the resolution of unconstrained quadratic op-
timization problems, both in theoretical and computational aspects (just as
classical linearization techniques attempt to reduce the nonlinear problem (1)
to an NP-hard, but much better understood, linear programming problem in
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binary variables). Resolution techniques based on quadratizations have proven
to be especially useful to solve very large-scale problems in the field of com-
puter vision, such as image restoration or segmentation.

However, not all quadratizations perform equally well when solving the
resulting quadratic problem. A desirable property of a quadratization is to
have a small set of auxiliary variables, so that the size of the reformulation
does not increase too much with respect to the size of the original problem
(although one should keep in mind that there may be other criteria to define
“good quadratizations”, such as providing tight relaxation bounds, preserving
structural properties of the original function, and so forth). In this paper we
focus on defining compact quadratizations, i.e., quadratizations that require
a smallest possible number of auxiliary variables for some specific classes of
functions.

Anthony et al. [3] established tight upper and lower bounds on the number
of variables that a quadratization requires, independently of the procedure
used to define the quadratization. More precisely, Anthony et al. prove that
there exist pseudo-Boolean functions of n variables for which every quadrati-
zation must involve at least Ω(2

n
2 ) auxiliary variables. They give a matching

upper bound by proving that every pseudo-Boolean function of n variables has
a quadratization involving at most O(2

n
2 ) variables. Furthermore, when con-

sidering functions of fixed degree d, similar results are established in [3], with

a lower bound of Ω(n
d
2 ) variables and an upper bound of O(n

d
2 ) variables.

The same authors provided in [2] several upper and lower bounds concerning
some of the classes of functions that we consider here. The precise bounds are
given in Section 2.

Given a pseudo-Boolean function f , there are many different methods to
construct a quadratization. In particular, termwise quadratizations have at-
tracted much interest in the literature. This type of procedure assumes that
a pseudo-Boolean function f is represented by its unique multilinear polyno-
mial expression. This assumption relies in turn on the well-known fact that a
pseudo-Boolean function f can be represented uniquely as a multilinear poly-
nomial of the form

f(x1, . . . , xn) =
∑

S∈2[n]

aS
∏
i∈S

xi, (3)

where 2[n] is the set of subsets of {1, . . . , n} (see [10,11]). We denote by deg(f)
the degree of the polynomial representation of f . Observe that if gS(x, yS) is
a quadratization of the monomial aS

∏
i∈S xi, where the vectors of auxiliary

variables yS are distinct for all monomials, then g(x, y) =
∑

S∈2[n] gS(x, yS) is
a quadratization of f . In order to construct small termwise quadratizations in
this manner, it is necessary to understand quadratizations of positive mono-
mials (aS > 0) and of negative monomials (aS < 0).

The case of negative monomials, or monomials with a negative coefficient,
is well understood. A simple expression to quadratize cubic negative monomi-
als was introduced by Kolmogorov and Zabih [16]. This expression was later
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extended to higher degrees by Freedman and Drineas [9], who observed that
a quadratization for the degree-n negative monomial Nn(x) = −

∏n
i=1 xi is

derived from the identity

Nn(x) = min
y∈{0,1}

(n− 1)y −
n∑

i=1

xiy. (4)

This quadratization uses a single auxiliary variable, which is the best that one
can expect for n ≥ 3.

Surprisingly, the case of monomials with a positive coefficient is much less
understood. Rosenberg [19] provided a quadratization procedure which can
be applied to any pseudo-Boolean function (given in polynomial form), and
which consists in recursively selecting a product of two variables xixj and
substituting this product by a new variable yij . The fact that yij should be
equal to the product xixj is imposed by adding a quadratic penalty term to
the function. Defining a quadratization for the degree-n positive monomial
Pn(x) =

∏n
i=1 xi using Rosenberg’s procedure requires the introduction of

n− 2 auxiliary variables. More recently, Ishikawa [14,15] defined the following
quadratization for Pn(x):

Pn(x) = min
y∈{0,1}m

m∑
i=1

yi(ci,n(−|x|+ 2i)− 1) +
|x| (|x| − 1)

2
, (5)

where |x| =
∑n

i=1 xi, m = bn−12 c and

ci,n =

{
1, if n is odd and i = m,

2, otherwise.

Quadratization (5) uses bn−12 c auxiliary variables, and this is currently the
best published upper bound on the number of variables required to define a
quadratization for the positive monomial. Anthony et al. [2] gave an indepen-
dent proof of the upper bound bn−12 c, based on a representation result for
arbitrary discrete functions. Interestingly, the quadratization of the positive
monomial defined in [2] is identical to Ishikawa’s for even values of n, but it
is slightly different for odd values.

In this paper we provide a quadratization for the positive monomial using
only m = dlog(n)e − 1 auxiliary variables, which is a significant improvement
with respect to Ishikawa’s quadratization and which reduces the upper bound
on the number of auxiliary variables by orders of magnitude. Moreover, we
prove that one cannot quadratize the positive monomial using less than m =
dlog(n)e− 1 variables, thus providing a lower bound that exactly matches the
upper bound.

Our quadratization of the Positive monomial is presented as a direct
consequence of two more general results that define quadratizations for Exact
k-out-of-n and At least k-out-of-n functions. Moreover, lower bounds on
the number of variables required to quadratize Exact k-out-of-n and At
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least k-out-of-n functions, and hence the Positive monomial, are derived
from a lower bound for an even more general class of functions, that we call
Zero until k functions.

In this paper, we also define a quadratization for Symmetric functions
using O(

√
n) = 2d

√
n+ 1e variables, which matches the lower bound of Ω(

√
n)

variables given in [2]. We also establish lower and upper bounds for a particular
symmetric function, the Parity function.

Section 2 formally defines the functions considered in this paper, illustrates
their relations and provides a summary of the bounds. The precise statements
for lower and upper bounds are presented in Section 3 and in Section 4, re-
spectively. Finally, Section 5 establishes some additional lower bounds which
are derived from a generalization of some of functions considered in the first
sections. These last bounds are weaker than the bounds presented in Sections 3
and 4, but might nevertheless be useful in other situations.

2 Definitions, notations and summary of contributions.

Let us first define some notations. We assume throughout the paper that
n ≥ 1. Let x = (x1, . . . , xn) ∈ {0, 1}n and let [n] = {1, . . . , n}. The Hamming
weight of x is |x| =

∑n
i=1 xi, that is, the number of ones in x. We denote

the complement of x by x̄ = (x̄1, . . . , x̄n) = (1 − x1, . . . , 1 − xn). Notice that
|x̄| =

∑n
i=1 x̄i = n− |x|.

The original variables of the considered functions will be denoted by x,
while auxiliary variables of quadratizations will be denoted by y and in some
cases z.

Definition 2 Zero until k functions. Let 0 ≤ k ≤ n be an integer. A Zero
until k function f : {0, 1}n → R is a pseudo-Boolean function such that
f(x) = 0 if |x| < k, and such that there exists a point x∗ ∈ {0, 1}n with
|x∗| = k and f(x∗) > 0.

It is easy to check that f is a Zero until k function if and only if, in its
unique multilinear representation (3), all terms of degree smaller than k have
coefficient zero, and there is one term of degree k with a positive coefficient.
In fact, when this is the case, aS = f(xS) for all |S| ≤ k, where xS ∈ {0, 1}n is
the characteristic vector of S, with components xSi = 1 for i ∈ S and xSi = 0
for i /∈ S.

Definition 3 Symmetric functions. A pseudo-Boolean function f : {0, 1}n → R
is symmetric if its value only depends on |x|, that is, if there exists a function
r : {0, . . . , n} → R such that f(x) = r(|x|).

Definition 4 The Exact k-out-of-n function. Let 0 ≤ k ≤ n be an integer.
The exact k-out-of-n function is defined as

f=k(x) =

{
1, if |x| = k

0, otherwise.
(6)
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Zero until k Symmetric

Exact k-out-of-n At least k-out-of-n Parity

Positive monomial

Fig. 1 Relation between the considered classes of functions.

Definition 5 The At least k-out-of-n function. Let 0 ≤ k ≤ n be an
integer. The At least k-out-of-n function is defined as

f≥k(x) =

{
1, if |x| ≥ k
0, otherwise.

(7)

Definition 6 The Positive monomial. When k = n, the exact n-out-
of-n function is equal to the At least n-out-of-n function. We call this
function Positive monomial and denote it Pn(x). Its polynomial expression
is

Pn(x) =

n∏
i=1

xi (8)

Definition 7 The Parity function. The parity function πn(x) is defined
as follows:

πn(x) =

{
1, if |x| is even,

0, otherwise.
(9)

Observe that Zero until k and Symmetric functions refer to classes of
functions satisfying certain properties, while Exact k-out-of-n, At least
k-out-of-n, Positive monomial and Parity refer to uniquely defined func-
tions, for a given n and a given k.

Figure 1 schematizes the relations between the previously defined classes of
functions. Classes on top of the figure are more general, and an arrow indicates
whether a function is a particular case of another one.

Table 1 presents a summary of the values of the lower and upper bounds
described in Section 3 and Section 4. (Here, and everywhere in the paper we
use the convention that log(0) = −∞.)

It should be noted that the meaning of the lower and upper bounds pre-
sented in Table 1 for the class of Symmetric functions, and the Ω(2

n
2 ) bound

for Zero until k functions are different from the rest. For example, for the
Exact k-out-of-n function, the lower bound means that we cannot quadra-
tize the Exact k-out-of-n function with fewer than max{dlog(k)e, dlog(n−
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Table 1 Summary of lower and upper bounds.

Function Lower Bound Upper Bound

Zero until k Ω(2
n
2 ) for some function (see [3]) O(2

n
2 ) (see [3])

dlog(k)e − 1 for all functions

Symmetric Ω(
√
n) for some function (see [2]) O(

√
n) = 2d

√
n+ 1e

Exact k-out-of-n max(dlog(k)e, dlog(n− k)e)− 1 max(dlog(k)e, dlog(n− k)e)

At least k-out-of-n dlog(k)e − 1 max(dlog(k)e, dlog(n− k)e)

Positive monomial dlog(n)e − 1 dlog(n)e − 1

Parity dlog(n)e − 1 dlog(n)e − 1

k)e} − 1 variables and the upper bound means that we have defined a precise
quadratization for the Exact k-out-of-n function using max{dlog(k)e, dlog(n−
k)e} variables. For Symmetric functions, the lower bound means that there
exists at least one symmetric function requiring Ω(

√
n) variables, while the

upper bound means that all symmetric functions can be quadratized using
O(
√
n) variables. See Section 3.1 and Section 4.1 for precise statements.

Anthony et al. established in [2] an upper bound of dn2 e variables for the
At least k-out-of-n function, and an upper bound of bn2 c variables for the
Exact k-out-of-n function. These bounds are significantly improved in this
paper, where we define tight upper and lower bounds that are logarithmic in n.

The lower bound for Symmetric functions presented in Table 1 is given
in [2]. In the same paper, a lower bound of Ω(

√
n) variables is also proved

for quadratizations of the Parity function that are linear in the y variables
(so called y-linear quadratizations), and an upper bound of bn2 c variables is
provided for the Parity function. These earlier results for Parity are also
improved here, firstly because we do not restrict ourselves to y-linear quadra-
tizations, and secondly because the number of necessary auxiliary variables is
reduced from linear to logarithmic in the upper bound; the resulting lower and
upper bounds are exactly equal.

For Zero until k functions, we present two different lower bounds. The
lower bound dlog(k)e − 1 is valid for all Zero until k functions, while the
lower bound Ω(2

n
2 ) is valid for almost all Zero until k functions. The cor-

responding result states that there exist Zero until k functions requiring
Ω(2

n
2 ) auxiliary variables in any quadratization. The upper bound for Zero

until k functions is the same as for general pseudo-Boolean functions (see [3]).
Indeed, the lower bound Ω(2

n
2 ) implies that the order of magnitude of the up-

per bound cannot be less than this value; this is actually a rather natural
observation, since for small values of k, most pseudo-Boolean functions are
Zero until k functions.
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3 Lower bounds.

This section formally states and proves the lower bounds on the number of
auxiliary variables summarized in Table 1.

3.1 Symmetric functions.

A lower bound for the number of variables required to quadratize symmetric
functions was established by Anthony et al. [2]. We state their theorem for
completeness.

Theorem 1 (Theorem 5.3 in [2]) There exist Symmetric functions of n
variables for which any quadratization must involve at least Ω(

√
n) auxiliary

variables.

3.2 Zero until k functions, Exact k-out-of-n, At least k-out-of-n
functions, and the Positive monomial.

We start this section with a lower bound for Zero until k functions which
is a direct extension of a result due to Anthony et al. [3].

Theorem 2 For every fixed integer k, there exist Zero until k functions of
n variables for which every quadratization must involve at least Ω(2

n
2 ) auxil-

iary variables.

Proof The proof is analogous to the proof of Theorem 1 in [3], and we only
briefly sketch it here. For any m, let Vm be the set of pseudo-Boolean functions
of n variables which can be quadratized using at most m auxiliary variables.
It was observed in [3] that Vm, viewed as a subset of the vector space of all
pseudo-Boolean functions, is contained in a finite union of subspaces, each of
dimension `(n,m) = O(nm + n2 + m2). On the other hand, for any fixed k,
the set of Zero until k pseudo-Boolean functions of n variables contains a
subspace of dimension 2n−O(nk) = Ω(2n), namely, the subspace spanned by
the monomials

∏
i∈S xi with |S| > k. It follows that, ifm auxiliary variables are

sufficient to quadratize every Zero until k function, then `(n,m) = Ω(2n),
and m = Ω(2

n
2 ). ut

Observe that, as was the case for general pseudo-Boolean functions in [3],
the bound in Theorem 2 actually holds for almost all Zero until k functions,
in the sense that the set of Zero until k functions that require less than
Ω(2

n
2 ) auxiliary variables has Lebesgue measure zero, when compared to the

whole space of Zero until k functions.
Furthermore, Theorem 2 implies that it is not possible to find an upper

bound on the number of auxiliary variables to define a quadratization for
Zero until k that is smaller than exponential in n – see Table 1. This also
makes sense intuitively, since for a fixed k, the proportion of Zero until k
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functions among all pseudo-Boolean functions tends to 1 as n goes to infinity,
and therefore, the same lower and upper bounds apply to Zero until k
functions as to general pseudo-Boolean functions.

We next present another lower bound for Zero until k functions.

Theorem 3 Assume that f is a Zero until k function with k ≥ 1 and that
g(x, y) is a quadratization of f with m auxiliary variables. Then,

m ≥ dlog(k)e − 1.

Proof Let us define

r(x) =
∏

y∈{0,1}m
g(x, y). (10)

For every point x ∈ {0, 1}n with |x| < k, f(x) = 0 by definition of Zero
until k functions. Also, since g(x, y) is a quadratization of f(x), there exists
y ∈ {0, 1}m such that g(x, y) = 0, which implies that r(x) = 0 for all points x
with |x| < k.

Moreover, since f is a Zero until k function we know that there exists
a point x∗ ∈ {0, 1}n such that |x∗| = k and f(x∗) > 0, which implies that
g(x∗, y) > 0 for all y ∈ {0, 1}m, and hence r(x∗) > 0. Let S∗ = {i ∈ [n] | x∗i =
1} with |S∗| = k.

In view of the observations following Definition 2, the unique multilinear
expression of r can be written as

r(x) =
∑
S⊆[n]
|S|≥k

aS
∏
i∈S

xi (11)

where aS∗ = r(x∗) > 0. Thus,

deg(r) ≥ k. (12)

Now, the right-hand-side of (10) is a product of 2m functions of degree
two, meaning that

deg(r) ≤ 2m+1, (13)

which together with (12) implies that m+ 1 ≥ dlog(k)e. ut

Notice the difference, of orders of magnitude, between the bounds given in
Theorem 2, which is valid for almost all functions, and in Theorem 3, which
is valid for all functions. The lower bound dlog(k)e − 1 given in Theorem 3
is rather weak for low values of k. However, for the particular case of the
Positive monomial it leads to a lower bound that exactly matches the upper
bound that we provide in Section 4.

Corollary 1 The Positive monomial Pn(x) is a Zero until n function,
and therefore it cannot be quadratized using less than dlog(n)e − 1 auxiliary
variables.
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For At least k-out-of-n and Exact k-out-of-n functions, the lower
bound of Theorem 3 remains weak for small values of k.

Corollary 2 For every fixed k ≥ 1, the At least k-out-of-n function is a
Zero until k function, and therefore it cannot be quadratized using less than
dlog(k)e − 1 auxiliary variables.

Corollary 3 For every fixed k ≥ 1, the Exact k-out-of-n function is a
Zero until k function, and therefore it cannot be quadratized using less than
dlog(k)e − 1 auxiliary variables.

However, for Exact k-out-of-n functions we can derive a tighter lower
bound on the number of auxiliary variables, with a difference of only one unit
with respect to the upper bound that will be defined in Section 4.2, by relying
on the following property:

Remark 1 The Exact k-out-of-n function is such that

f=k(x1, . . . , xn) = f=n−k(x̄1, . . . , x̄n).

Theorem 4 Let k ≥ 1 and assume that g(x, y) is a quadratization of the
Exact k-out-of-n function f=k with m auxiliary variables. Then,

m ≥ max(dlog(k)e, dlog(n− k)e)− 1.

Proof By Corollary 3, m ≥ dlog(k)e − 1. By Remark 1, f=k(x1, . . . , xn) =
f=n−k(x̄1, . . . , x̄n), thus, by changing the names of the x variables we see
that h(x, y) = g(x̄, y), viewed as a function of (x, y), is a quadratization of
f=n−k(x1, . . . , xn) using m auxiliary variables. Corollary 3 implies that any
quadratization of f=n−k(x1, . . . , xn) uses at least dlog(n − k)e − 1 auxiliary
variables, thus m ≥ dlog(n− k)e − 1, which completes the proof. ut

Remark 2 Observe that max(dlog(k)e, dlog(n − k)e) − 1 is not a valid lower
bound for all Zero until k functions. Indeed, consider for example a Posi-
tive monomial of degree k, seen as a function f of n variables: f(x1, . . . , xn) =∏k

i=1 xj , where n is such that dlog(n− k)e > dlog(k)e. This is a Zero until
k function. In Theorem 9 hereunder, we define a quadratization for this Pos-
itive monomial that uses dlog(k)e − 1 auxiliary variables. This shows that
dlog(n−k)e− 1 cannot be a lower bound on the number of auxiliary variables
for all Zero until k functions.

3.3 The Parity function.

In this section we prove that dlog(n)e − 1 is a lower bound on the number of
variables required to define a quadratization for the Parity function.

Theorem 5 Assume that g(x, y) is a quadratization of the Parity function
πn(x) with m auxiliary variables. Then,

m ≥ dlog(n)e − 1.
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Proof Let us define

r(x) =
∏

y∈{0,1}m
g(x, y). (14)

Note that deg(r) ≤ 2m+1, since g(x, y) is quadratic.

Note also that r(x) ≥ 1 whenever |x| is even and r(x) = 0 whenever |x| is
odd. Therefore we can write

r(x) =
∑

z∈{0,1}n
|z| even

r(z)
∏

i:zi=1

xi
∏

i:zi=0

(1− xi).

The sign of the coefficient of
∏n

i=1 xi in each of the above terms is (−1)n.
Thus, in the unique multilinear representation of r(x),

∏n
i=1 xi has coefficient

(−1)n
∑

z∈{0,1}n
|z| is even

r(z) 6= 0,

and consequently, deg(r) = n. The inequality

n = deg(r) ≤ 2m+1

follows, implying the claim. ut

4 Upper bounds.

This section defines the quadratizations for Symmetric pseudo-Boolean func-
tions, for the Exact k-out-of-n and At least k-out-of-n functions, and
for the Positive monomial and the Parity function that lead to the upper
bounds displayed in Table 1.

4.1 Symmetric functions.

Let N be the set of nonnegative integers and Z = {0, 1, . . . , n}. Theorem 6
defines a quadratization of Symmetric functions using 2d

√
n+ 1e auxiliary

variables.

Theorem 6 Let f(x1, . . . , xn) be a Symmetric pseudo-Boolean function such
that f(x) = r(|x|), with r : N → R and r(k) = 0 for k > n, by convention.
Let l = d

√
n+ 1e, and choose M ∈ R such that M > |r(k)| for all k ∈ Z.
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Then,

g(x, y, z) =

l−1∑
i=0

l−1∑
j=0

r(il + j)yizj (15)

+ 2M

(
1−

l−1∑
i=0

yi

)2

+ 2M

1−
l−1∑
j=0

zj

2

+ 2M

|x| −
l l−1∑

i=0

iyi +

l−1∑
j=0

jzj

2

is a quadratization of f using 2d
√
n+ 1e = O(

√
n) auxiliary variables yi, zi,

i = 0, . . . , l − 1.

Proof Observe first that every integer k ∈ Z has a unique representation
k = il+ j with 0 ≤ i, j ≤ l− 1. So, for every x ∈ {0, 1}n, let us define integers
i(x) and j(x) such that |x| = i(x) l+j(x), 0 ≤ i(x) ≤ l−1 and 0 ≤ j(x) ≤ l−1
hold.

Let us then define auxiliary vectors y∗, z∗ ∈ {0, 1}l (with components in-
dexed from 0 to l − 1), such that

y∗i =

{
1 if i = i(x),

0 otherwise,

z∗j =

{
1 if j = j(x),

0 otherwise.

Let us observe next that due to the three terms involving M in (15),
g(x, y, z) < M if and only if y = y∗ and z = z∗. Due to the definition of the
first term of g, in this case g(x, y∗, z∗) = r(|x|) = f(x). ut

The upper bound in Theorem 6 matches the order of magnitude of the
lower bound given in Theorem 1. Interestingly, in combination with Lemma
5.1 of [2], it also implies that every pseudo-Boolean function can be quadratized
using O(2n/2) auxiliary variables, a result proved by another approach in [3].

Finally, observe that Theorem 6 can be generalized to a more general class
of pseudo-Boolean functions, for which the value of a given x ∈ {0, 1}n is
determined by a weighted sum of the values of the components xi instead of
the the Hamming weight |x| =

∑n
i=1 xi of x. More precisely, given a linear

function L : {0, 1}n → {0, 1, . . . , R} and a function r : N → R with
r(k) = 0 for k > R, consider the pseudo-Boolean function f(x) = r(L(x)).
Theorem 6 holds for f by considering l = d

√
R+ 1e and substituting |x| by

L(x) in equation (15).
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4.2 Exact k-out-of-n and At least k-out-of-n functions.

Theorem 7 and Theorem 8 are the main results of this section. They de-
fine, respectively, a quadratization for the Exact k-out-of-n function and a
quadratization for the At least k-out-of-n function using at most dlog(n)e
variables. The following observations will be useful in the proofs of Theorems 7
and 8.

Let us define the following sets

I leven = {0, 2, . . . , 2l − 2}, (16)

and
I lodd = {1, 3, . . . , 2l − 1}. (17)

Remark 3 Observe that for all l ≥ 2,

I leven =

{
l−1∑
i=1

2iyi | (y1, . . . , yl−1) ∈ {0, 1}l−1
}
, (18)

and

I lodd =

{
1 +

l−1∑
i=1

2iyi | (y1, . . . , yl−1) ∈ {0, 1}l−1
}
. (19)

Remark 4 Given integers 0 ≤ |x| ≤ n, 0 ≤ k ≤ n and l = max(dlog(k)e, dlog(n−
k)e), observe that

0 ≤ |x| − k + 2l ≤ 2l − 1, for |x| < k, (20)

and
0 ≤ |x| − k − 1 ≤ 2l − 1, for |x| > k. (21)

Proof Note first that, by definition of l, 2l ≥ k and 2l ≥ n− k are satisfied for
all k. The first inequality of (20) holds because |x| ≥ 0 and 2l ≥ k, and the
second one holds because |x| < k. The first inequality of (21) holds because
k < |x|, and the second one holds because |x| − k ≤ n− k ≤ 2l. ut

Let us define

Ak(x, y, z) = |x| − (k − 2l)z − (k + 1)(1− z)−
l−1∑
i=1

2iyi,

where l = max(dlog(k)e, dlog(n − k)e), z ∈ {0, 1} and y = (y1, ..., yl−1) ∈
{0, 1}l−1.

Theorem 7 For each integer 0 ≤ k ≤ n, the function

Gk(x, y, z) =
1

2
Ak(x, y, z)(Ak(x, y, z)− 1) (22)

is a quadratization of the Exact k-out-of-n function f=k using

l = max(dlog(k)e, dlog(n− k)e) ≤ dlog(n)e

auxiliary variables y ∈ {0, 1}l−1 and z ∈ {0, 1}.
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Proof Note first that Gk(x, y, z) ≥ 0 for all (x, y, z) and for all k, since it is
the half-product of two consecutive integers. Therefore, when |x| 6= k we only
have to show that there exists (y, z) such that Gk(x, y, z) = f=k(x) = 0.

We consider three cases:

1. If 0 ≤ |x| < k, set z = 1 so that Ak(x, y, 1) = |x| − k + 2l −
∑l−1

i=1 2iyi. By
Remark 4, 0 ≤ |x|−k+ 2l ≤ 2l−1. Hence, using Remark 3 if |x|−k+ 2l ∈
I lodd, one can choose y such that Ak(x, y, 1)−1 = 0, and if |x|−k+2l ∈ I leven,
one can choose y such that Ak(x, y, 1) = 0.

2. If k < |x| ≤ n, set z = 0 so that Ak(x, y, 0) = |x| − k − 1−
∑l−1

i=1 2iyi. By
Remark 4, 0 ≤ |x|−k−1 ≤ 2l−1. Hence, using Remark 3 if |x|−k−1 ∈ I lodd,
one can choose y such that Ak(x, y, 0) − 1 = 0, and if |x| − k − 1 ∈ I leven,
one can choose y such that Ak(x, y, 0) = 0.

3. Consider finally the case where |x| = k. When z = 1, we obtainAk(x, y, 1) =

2l −
∑l−1

i=1 2iyi ≥ 2, and hence Gk(x, y, 1) ≥ 1. When z = 0, Ak(x, y, 0) =

−1−
∑l−1

i=1 2iyi ≤ −1, and hence again Gk(x, y, 0) ≥ 1. The minimum value
Gk(x, y, z) = 1 is obtained by setting either z = yi = 1, or z = yi = 0, for
i = 1, . . . , l − 1. ut

As announced earlier, the upper bound established in Theorem 7 almost
perfectly matches the lower bound given in Theorem 4. Moreover, Theorem 7
provides as a corollary an upper bound on the number of variables required
to obtain a quadratization of Symmetric functions.

Corollary 4 If f : {0, 1}n → R is a Symmetric function, the value of
which is strictly above its minimum value for at most d different Hamming
weights |x|, then f can be quadratized with at most d (dlog(n)e) variables.

Proof Let r : {0, 1, . . . , n} → R be such that f(x) = r(|x|). Let α be the
minimum value of f (and of r), and let k1, . . . , kd be the values of |x| such
that f(x) (and r(|x|)) is larger than α. The result follows from Theorem 7 by
observing that f can be expressed as

f(x) = α+

d∑
i=1

(r(ki)− α) f=ki
(x). ut

Let us now turn to the case of At least k-out-of-n functions.

Theorem 8 For each integer 0 ≤ k ≤ n, the function

Gk(x, y, z) =
1

2
(Ak(x, y, z)) (Ak(x, y, z)− 1) + (1− z) (23)

is a quadratization of the At least k-out-of-n function f≥k using

l = max(dlog(k)e, dlog(n− k)e) ≤ dlog(n)e

auxiliary variables y ∈ {0, 1}l−1 and z ∈ {0, 1}.



Compact quadratizations for pseudo-Boolean functions 15

Proof Note again that Gk(x, y, z) ≥ 0 for all (x, y, z), because its first term is
the half-product of two consecutive integers and 1 − z ≥ 0. Therefore, when
|x| < k we only have to show that there exists (y, z) such that Gk(x, y, z) =
f≥k(x) = 0.

1. If 0 ≤ |x| < k, set z = 1. We obtain exactly the same expression as in the
proof of Theorem 7 and the same argument holds.

2. If |x| = k and z = 1, we obtain Ak(x, y, 1) = 2l−
∑l−1

i=1 2iyi ≥ 2, and hence
Gk(x, y, 1) ≥ 1. If z = 0, we have that Gk(x, y, 0) ≥ 2. As in the proof
of Theorem 7, we attain the minimum value Gk(x, y, z) = 1 by setting
z = yi = 1, for i = 1, . . . , l − 1 .

3. Finally, let |x| > k. For z = 1,

Gk(x, y, 1) =
1

2

(
|x| − k + 2l −

l−1∑
i=1

2iyi

)(
|x| − k + 2l −

l−1∑
i=1

2iyi − 1

)
.

Now,
(
|x| − k + 2l −

∑l−1
i=1 2iyi

)
≥ 2 because 2l−

∑l−1
i=1 2iyi ≥ 2 and |x|−k

is strictly positive. Hence, Gk(x, y, 1) ≥ 1.
For z = 0,

Gk(x, y, 0) =
1

2

(
|x| − k − 1−

l−1∑
i=1

2iyi

)(
|x| − k − 1−

l−1∑
i=1

2iyi − 1

)
+ 1.

By Remark 4, 0 ≤ |x|−k−1 ≤ 2l−1. Hence, using Remark 3 if |x|−k−1 ∈
I lodd, one can choose y such that Ak(x, y, 0)−1 = 0, and if |x|−k−1 ∈ I leven,
one can choose y such that Ak(x, y, 0) = 0, thus achieving Gk(x, y, 0) =
f≥k(x) = 1 in both cases. ut

The upper bound in Theorem 8 is larger than the lower bound given in Corol-
lary 2 when k < n

2 , but the bounds are equal, up to one unit, for larger values
of k.

4.3 The Positive monomial.

In this section we define a quadratization using dlog(n)e−1 auxiliary variables
for the Positive monomial. Since the Positive monomial is a particular
case of the Exact k-out-of-n function and of the At least k-out-of-n
function (with k = n), Theorem 7 and Theorem 8 imply a slighlty weaker
upper bound. Nevertheless, the stronger upper bound in Theorem 9 can be
easily derived from the proofs of these theorems when k = n.

Theorem 9 Let l = dlog(n)e. Then,

g(x, y) =
1

2
(|x|+ 2l − n−

l−1∑
i=1

2iyi) (|x|+ 2l − n−
l−1∑
i=1

2iyi − 1) (24)

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using dlog ne−1
auxiliary variables.
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Proof This is a direct consequence of the proofs of Theorem 7 and Theorem 8:
indeed, when setting k = n it is easy to verify that we can always fix z = 1 in
the quadratizations (22) and (23). ut

As mentioned in Section 1, Theorem 9 provides a significant improvement
over the best previously known quadratizations for the Positive monomial,
and the upper bound on the number of auxiliary variables precisely matches
the lower bound presented in Section 3.

Remark 5 Although the quadratization (24), and the related expressions (22)
or (23), may seem somewhat mysterious, it is instructive to realize that they
derive from rather simple modifications of a more natural result: indeed, the
readers may easily convince themselves that, when n = 2l, then

g′(x, y) = (|x| −
l−1∑
i=0

2iyi)
2

is a quadratization of Pn using log(n) auxiliary variables. This result clearly
highlights the underlying intuition, which is that |x| can always be expressed

as |x| =
∑l−1

i=0 2iyi, except when |x| = n.
When n < 2l, the quadratization g′ can be adjusted by fixing 2l−n variables

xi to 1 in P2l and in g′. Moreover, the number of auxiliary variables can
be marginally reduced by distinguishing between even and odd values of |x|.
Altogether, this leads to Theorem 9.

Let us finally present the following family of quadratizations of the positive
monomial, the best of which uses dn4 e auxiliary variables (see [4] for a proof).

Theorem 10 For all integers n ≥ 2, if n
4 ≤ m ≤

n
2 , and N = n− 2m, then

g(x, y) =
1

2
(|x| − 2|y| − (N − 2)y1) (|x| − 2|y| − (N − 2)y1 − 1) (25)

is a quadratization of the positive monomial Pn =
∏n

i=1 xi using m auxiliary
variables.

These quadratizations require a linear number of auxiliary variables but
still improve the bn−12 c bound of (5). Notice that Ishikawa’s quadratization
(5) uses coefficients of absolute values varying approximately between 1 and
n, while the absolute values of the coefficients in (24) and (25) vary roughly
between 1 and n2, which might result in functions containing coefficients of
very different orders of magnitude, potentially inducing numerical problems
when n is large. Moreover, note that dlog ne− 1 is equal to dn4 e when 3 ≤ n ≤
12, so that the difference in the number of auxiliary variables only becomes
relevant for very high degrees. Finally, the number of positive quadratic terms
is also different in quadratizations (5), (24), and (25), especially for large
degrees, which might also impact computational performance. All in all, the
behavior of these different quadratizations in an optimization setting is unclear
and should be computationally tested. Some preliminary results can be found
in [18].
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4.4 The Parity function.

Theorem 11 Let l = dlog(n)e. When n is even, the function

ge(x, y) =

(
|x| − n+ 2l −

l−1∑
i=1

2iyi − 1

)2

(26)

is a quadratization of the Parity function πn(x).

When n is odd, the function

go(x, y) =

(
|x| − n+ 2l −

l−1∑
i=1

2iyi

)2

(27)

is a quadratization of the Parity function πn(x).

Both ge(x, y) and go(x, y) use dlog(n)e − 1 auxiliary variables.

Proof Assume that n is even. Then, 2l − n is even and the parity of |x| and
|x| − n+ 2l is the same.

If |x| is odd, we only have to show that for each x, there exists a y such
that ge(x, y) = 0, because ge(x, y) ≥ 0 holds for all (x, y). Since |x| − n+ 2l is
odd, we have that 0 ≤ |x| − n + 2l ≤ 2l − 1. Now, Remark 3 implies that for
the right choice of y, ge(x, y) = 0 is satisfied.

If |x| is even, ge(x, y) ≥ 1 holds for all (x, y), because |x| − n + 2l −∑l−1
i=1 2iyi − 1 is odd. Moreover, since 0 ≤ |x| − n + 2l ≤ 2l we obtain

miny∈{0,1}l−1 ge(x, y) = 1 with an appropriate choice of y.

When n is odd, the proof is analogous by considering I leven instead of I lodd
and by noticing that |x| and |x| − n+ 2l have different parities. ut

5 Further lower bounds.

This last section presents lower bounds on the number of variables required to
define a quadratization for a class of pseudo-Boolean functions generalizing At
least k-out-of-n, Exact k-out-of-n, Parity functions and a particular
type of Symmetric functions. These functions are called d-sublinear, and
are characterized by the fact that they take value zero everywhere, except
on d hyperplanes. The main result of this section is Theorem 12, which gives
a logarithmic lower bound on the number of auxiliary variables required to
define a quadratization for d-sublinear functions. We choose to present these
results in a separate section because the bounds derived from Theorem 12 are
in general weaker than those presented in Section 3. Nevertheless, Theorem 12
may prove useful in other situations, and establishes an interesting link with
results obtained by Linial and Radhakrishnan [17] in a different context (see
also Alon and Füredi [1]).
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Definition 8 A pseudo-Boolean function f : {0, 1}n → R is d-sublinear,

if there exist linear functions q1, . . . , qd such that
∏d

j=1 qj(x) = 0 whenever
f(x) 6= 0. We say that the linear functions q1, . . . , qd dominate f .

We say that a pseudo-Boolean function is sublinear if it is 1-sublinear.

In other words, f is d-sublinear if every point x∗ such that f(x∗) 6= 0
belongs to at least one of the hyperplanes q1(x) = 0, . . . , qd(x) = 0.

For a linear function q = a0 +
∑n

i=1 aixi, let β(q) denote the number of
variables with a non-zero coefficient in q, that is,

β(q) = |{i ∈ {1, . . . , n} such that ai 6= 0}|.

We are going to use the following lemma.

Lemma 1 (Lemma 2 in [17]) Assume that r : {0, 1}n → R is a sublinear
function dominated by a linear function q, and assume that there exists a point
x∗ such that r(x∗) 6= 0. Then,

deg(r) ≥ β(q)

2
.

Theorem 12 Assume that f is a d-sublinear function dominated by linear
functions q1, . . . , qd, and that there exists x∗ ∈ {0, 1}n such that f(x∗) > 0,

q1(x∗) = 0 and
∏d

j=2 qj(x
∗) 6= 0. Then, the number m of auxiliary variables

in any quadratization of f is such that

2m+1 ≥ β(q1)

2
− d+ 1.

Proof Let us define

r(x) =

d∏
j=2

qj(x)
∏

y∈{0,1}m
g(x, y),

and note that
deg(r) ≤ d− 1 + 2m+1,

because r is a product of d− 1 linear functions and 2m quadratic functions.
Since g is a quadratization of f and f(x∗) > 0, we have g(x∗, y) > 0 for all

y ∈ {0, 1}m. By assumption,
∏d

j=2 qj(x
∗) 6= 0, and hence r(x∗) 6= 0.

Moreover, r is sublinear dominated by the function q1. Indeed, for points
x with r(x) 6= 0, the definition of r implies that qj(x) 6= 0 for all j = 2, . . . , n
and g(x, y) 6= 0 for all y ∈ {0, 1}m, thus f(x) 6= 0. But f is d-sublinear, thus
q1(x) = 0, which implies that r(x) is sublinear.

The conditions of Lemma 1 are satisfied, therefore

deg(r) ≥ β(q1)

2
,

which together with deg(r) ≤ d− 1 + 2m+1 proves the claim. ut
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The bound of Theorem 12 is of interest when d is small. In particular,
for the special case of Exact k-out-of-n functions (including the Positive
monomial), we can take d = 1 and q1(x) =

∑n
i=1 xi− k. This yields a lower

bound log(n) − 2 that is only slightly weaker than the bound established in
Theorem 4. More generally, for arbitrary symmetric functions, we have the
following corollary.

Corollary 5 If f is a Symmetric function, the value of which is strictly
above its minimum value for at most d different Hamming weights |x|, where
d ≤ µn + 1 and 0 ≤ µ < 1

2 , then the number m of auxiliary variables in any
quadratization of f is such that

m ≥ log(
1

2
− µ) + log(n)− 1.

Proof As in the proof of Corollary 4, let α be the minimum value of f . Then,
h = f−α is strictly positive for d values of |x|, and Theorem 12 applies directly
to h with d dominating linear functions of the form qi(x) =

∑n
i=1 xi − ki, for

i = 1, . . . , d. ut

Again, this bound is relatively weak when compared, for instance, to the
upper bound in Corollary 4, but it could prove useful in some cases.

6 Conclusions

In this paper we have established new upper and lower bounds on the number
of auxiliary variables required to define a quadratization for several classes of
specially structured pseudo-Boolean functions defined on n binary variables.
These bounds greatly improve the best bounds previously proposed in the
literature. Most remarkably, the best upper bound published so far for the
Positive monomial was linear in n, whereas our new upper bound is loga-
rithmic. Moreover, for the Positive monomial and for the Parity function,
we have also established lower bounds that exactly match the upper bounds.

Furthermore, we have provided logarithmic upper and lower bounds for
Exact k-out-of-n and At least k-out-of-n functions. For Symmetric
functions we have proved an upper bound of the order of O(

√
n), matching

the order of magnitude of the best lower bound proposed in the literature.
For the more general class of Zero until k functions, we have established

two different types of lower bounds, namely, a logarithmic bound in k which
is valid for all functions in this class, and an exponential bound in n, which is
valid for almost all Zero until k functions and which implies that the upper
bounds available for general pseudo-Boolean functions are also applicable for
this class.

Many additional questions arise from these results. From a theoretical point
of view, it would be interesting to explore further generalizations and classes of
pseudo-Boolean functions. For Exact k-out-of-n and At least k-out-of-
n functions, the lower and upper bounds are of the same order of magnitude,



20 Boros, Crama, and Rodŕıguez-Heck

but it would be nice to close the remaining unit gap. From an experimental
perspective, it would be worth to examine the computational behavior of the
different proposed quadratizations when applied to generic pseudo-Boolean
optimization problems.
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